Steel warehouse design report

18 Aug.,2023

 

  1. - 1 - Steel

    Warehouse Design Report 1.Design Information Steel Warehouse : Single floor , 18m clearly span , eave height 6m ,column distance 6m ,totally 12pcs steel frame ,roof slope 1:10 , Seismic intensity of 7 degree , Seismic acceleration value 0.05g , Steel Frame Layout Plan Figure 1(a) , Steel Frame Type Figure 1(b) , wall and roof panel used corrugated color coated single sheet ,with glass wool insulation ,Wall Girt and Roof Purlin used Galvanized C section , distance 1.5m , Steel Materials Q345B ,welding rod : E43

  2. - 2 - 2.Loading

    Calculated (1) Loading Value : 1)Roof Dead Loading (Horizontal projected area) YX51-380-760 Corrugated single sheet 0.15 KN/m2 50mmGloass Wool Insulation 0.05 KN/m2 Aluminum Foil and wire mesh 0.02 KN/m2 Purlin and Bracing 0.10 KN/m2 Self-weight of Roof Beam 0.15 KN/m2 Hanging Equipments 0.20 KN/m2 Totally 0.67 KN/m2 2)Roof Live Loading Roof Live Loading Value : 0.50 KN/m2 。 Snow Loading : Snow PressureS0=0.45 KN/m2 。Double Slope Roof Roof Slope α=5°42′38,μr=1.0 , Snow Loading : Sk=μrS0=0.45 KN/m2 。 Compared live loading and snow loading used the bigger value : 0.50 KN/m2 Not consider the Dust Load . 3)Light Weight Wall and self-weight of column (including Column , wall-stud structures ) : 0.50 KN/m2 4)Wind Loading : According 《Technical Specification for Light-Weighted Steel Portal Frames》 CECS102: 2002 Basic Wind Pressure ω0=1.05×0.45 KN/m2 , Ground Roughness : B, Height variation factor of Wind Loading according《Building Structural Load Code》 (GB50009-2001), when height less than 10m, according 10m height value, μz=1.0. Wind Load Shape Factor μs : Windward Column and Roof are respectively+0.25 and-1.0, Leeward Column and Roof are respectively +0.55 and-0.65(CECS102:2002).

  3. - 3 - 3.The

    Load Standard Calculated Value of Each Part Roof Loading: Dead Loading Standard Values : 0.67×6=4.02KN/m Live Loading Standard Value : 0.50×6=3.00KN/m Column Loading : Dead Loading Standard Value : 0.5×6×6+4.02×9=54.18KN Live Loading Standard Value : 3.00×9=27.00KN Wind Loading Standard Value : Windward : Column qw1=0.47×6×0.25=0.71KN/m Rafter qw2=-0.47×6×1.0=-2.82KN/m Leeward : Column qw3=-0.47×6×0.55=-1.55KN/m Rafter qw4=-0.47×6×0.65=-1.83KN/m 4. Inner Force Analysis (1)Under Dead Loading λ=l/h=18/6=3 ψ=f/h=0.9/6=0.15 k=h/s=6/9.0449=0.6634 μ=3+k+ψ(3+ψ)=3+0.6634+0.15×(3+0.15)=4.1359 5289.0 1359.44 15.058 4 58        HA=HE=qlλΦ/8=4.02×18×3×0.5289/8=14.35KN MC=ql2 [1-(1+ψ) Φ]/8=4.02x182 [1-(1+0.15)×0.5289]=63.78KN·m MB=MD=-ql2 Φ/8=-4.02×182 ×0.5289/8=-86.11KN·m Inner Force of Steel Frame under dead loading as below figure

  4. - 5 - (2)

    Under Live Loading VA=VE=27.00KN HA=HE=3.00×18×3×0.5289/8=10.71KN MC=3.00×182 [1-(1+0.15)×0.5289]/8=47.60KN·m MB=MD=-3.00×182 ×0.5289/8=-64.26KN·m Inner Force of Steel Frame under live loading as below figure

  5. - 6 - (3)

    Under Wind Loading The wind load acting on the roof can be decomposed into the component force qx in the horizontal direction and the vertical component force qy. Calculated separately, and then superimposed. 1) The Rafter under the action of wind loading vertical component of forces (qw2y) on windward side 1322.0)15.058( 1359.416 1 )58( 16 1      KN l qa VE 35.6 182 982.2 2 22     VA=2.82×9-6.35=19.03KN HA=HE=qlλ Φ /4=2.82×18×3×0.1322/4=5.03KN MB=MD=5.03×6=30.18KN·m MC= ql2 [α 2 -(1+ψ ) Φ ]/4=2.82×182 ×[0.52 -1.15×0.1322]/4=22.38KN·m

  6. - 7 - Steel

    Frame Internal Force diagram under action of (qw2y) 2) The Rafter under the action of wind loading vertical component of forces (qw2y) on leeward side KN l qa VE 12.4 182 983.1 2 22     VA=1.83×9-4.12=12.35KN HA=HE=qlλ Φ /4=1.83×18×3×0.1322/4=3.27KN MB=MD=3.27×6=19.62KN·m MC= ql2 [α 2 -(1+ψ ) Φ ]/4=1.83×182 ×[0.52 -1.15×0.1322]/4=14.52KN·m Steel Frame Internal Force diagram under action of (qw2y)

  7. - 8 - 3)

    The Column under wind loading action qw1 on windward side α=1, 9803.0]16634.0)6634.015.02(6[ 1359.44 1 ])2(6[ 4 1 22      KK VA=-VB=-qh1 2 /2L=-0.71×62 /(2×18)=-0.71KN KN qh HA 22.3)9803.0 2 1 2( 2 1671.0 ) 2 2( 2     HE=0.71×6-3.22=1.04KN MD=1.04×6=6.24KN·m mKN qh MC    81.0)]9803.0)15.01(1[ 4 1671.0 ])1(1[ 4 2222   Steel Frame Internal Force diagram under action of (qw1) mKN qh MB    52.6)9803.02( 4 1671.0 )2( 4 2222 

  8. - 9 - 4)

    The Column under wind loading action qw3 on windward side VA=-VB=-qh1 2 /2L=-1.55×62 /(2×18)=-1.55KN KN qh HE 02.7)9803.0 2 1 2( 2 1655.1 ) 2 2( 2     HA=1.55×6-7.02=2.28KN MD=7.02×6-1.55×62 /2=14.22KN·m MB=2.28×6=13.68KN·m mKN qh MC    78.1)]9803.0)15.01(1[ 4 1655.1 ])1(1[ 4 2222   Steel Frame Internal Force diagram under action of (qw3)

  9. - 10 - 5)

    The Beam under wind loading action (qw2x )on windward side α=1,β=0 0202.0)15.0134( 1359.48 15.0    KNVV EA 91.0)9.062( 182 9.082.2     HA=2.82×0.9(1+0.0202)/2=1.29KN HE=2.82×0.9-1.29=1.25KN mKNMC    39.0]0202.015.15.015.0[ 2 69.082.2 MB=1.29×6=7.74KN·m MD=1.25×6=7.50KN·m

  10. - 11 - Steel

    Frame Internal Force diagram under action of (qw2x) 6) The Rafter under the action of wind loading vertical component of forces (qw4x) on leeward side KNVV EA 59.0)9.062( 182 9.083.1     HA=1.83×0.9(1+0.0202)/2=0.84KN HE=1.83×0.9-0.84=0.81KN mKNMC    26.0]0202.015.15.015.0[ 2 69.083.1 MB=0.81×6=4.86KN·m MD=0.84×6=5.04KN·m

  11. - 12 - Steel

    Frame Internal Force diagram under action of (qw4x) 7) The combined force of steel frame under wind load

  12. - 13 - 4.Internal

    force combination The frame structure is designed according to the ultimate capacity of the load capacity. According to the 《Building Structural Load Code》(GB50009-2001), the basic combination of load effect is used: γ 0S≤R. The safety grade of the structural components of this project is Grade 2, γ0 = 1.0. The design value of the load effect combination (S) is determined by taking the most unfavorable values from the following combination values : A. 1.2 × constant load standard value calculated load effect + 1.4 × live load standard value calculated load effect

  13. - 14 - B.

    1.0 × constant load load value calculated by the load effect + 1.4 × wind load standard value calculated load effect C. 1.2 × constant load standard value calculated load effect + 1.4 × live load standard value calculated load effect + 0.6 × 1.4 wind load standard value calculated load effect D. 1.2 × constant load standard value calculated load effect + 1.4 × wind load standard value calculated load effect + 0.7 × 1.4 × live load standard value calculated load effect E. 1.35 × Constant load calculated by the load effect of + 0.7 × 1.4 × live load standard value calculated load effect The most unfavorable internal force combination of the calculated control section to take the bottom of the column, the top of the column, end beam and beam cross section, for the rigid beam, the cross section may be the most unfavorable internal force combination: Beam end section: (1) Mmax and the corresponding N, V; (2) Mmin and the corresponding N, V Beam cross section: (1) Mmax and the corresponding N, V; (2) Mmin and the corresponding N, V For the rigid column, the most unfavorable internal forces of the cross section are: (1) Mmax and the corresponding N, V; (2) Mmin and the corresponding N, V (3) Nmax and the corresponding ± Mmax, V; (4) Nmin and the corresponding ± Mmax, Internal Force Combination see below figure

  14. - 15 - Internal

    Force Combination of Steel Frame Figure 1 Section Internal Force Combination Loading combine mode Loading Combine portfolio M (KN·m) N (KN) V (KN) Column Top Column (B point) Mmax, N, V A 1.2×dead +1.4× live 193.30 81.22 -32.21(←) Mmin, N, V B 1.0×dead +1.4×wind -7.89 1.05 -1.67(←) Nmax ±Mmax、V A 1.2×dead+1.4×live 193.30 81.22 -32.21(←) Nmin ±Mmax、V B 1.0×dead+1.4×wind -7.89 1.05 -1.67(←) Bottom Column (A point) Mmax, N, V Mmin, N ,V Nmax ,±Mmax ,V A 1.2×dead+1.4×live 0 102.82 -32.21(→) Nmin ±Mmax ,V B 1.0×dead+1.4×wind 0 19.05 4.30(←) Beam Support (B point) Mmax N , V A 1.2×dead+1.4×live 193.30 39.89 77.60(↑) Mmini N ,V B 1.0×dead+1.4×wind -7.89 1.57 0.89(↑) Midspan (C Point) Mmax, N, V B 1.0×dead+1.4×wind -9.40 -2.03 0.60(↓) Mmin , N ,V A 1.2×dead+1.4×live -143.18 31.81 -3.21(↑)

  15. - 17 - 5.Steel

    Frame Design (1) Section design Column and Beam used welded H section Steel 450×200×8×12, Section properties: B=200mm,H=450mm,tw=8.0mm,tf=12.0mm,A=82.1cm2 Ix=28181cm4 ,Wx=1252cm3 ,ix=18.53cm Iy=1602cm4 ,Wx=160.2cm3 ,ix=4.42cm (2) Section Checking 1) Width-to-thickness ratio checking Flange Plate : 15235/f15896/12b/t y  Web Plate : 250235/f50225.356/824/th yw0  2) Beam Checking (1)The shearing calculation Max Shearing of Beam section Vmax=77.60KN Consider only with support stiffened plate 8.0562.0235/ 34.541 /0  y w s f th  fv=125N/mm2 Vu=hwtwfv=426×8×125=426000N=426.0KN Vmax=77.60KN<Vu,Ok (2) Bending moment, Shearing force, Pressure action checking together Checking and calculated the end of beam N=39.89KN,V=77.60KN,M=193.30KN·N Because V<0.5Vu,V=0.5Vu ,According to code , GB70017 . ))(( 22 2 2 1 1 A N fhA h h AM fff 

  16. - 18 - ) 8210 39890 215)(21912200 219 219 12200( 2  =220.90KN·m>M=193.30KN·m,M=Mf 10)1 5.0 (

    2     feu f u MM MM V V , OK (3) Overall stability checking N=39.89KN,M=193.30KN·m A.In-plane Beam Overall stability checking Calculated Length according beam length : lx=18090mm, λ x=lx/ix=18090/185.3=97.63<[λ ]=150,b type section ,ψ x=0.570 KN EA N e EX 0.1592 63.971.1 821010206 1.1 2 32 2 0 2 ' 0        ,β mx=1.0 ) 1592 89.39 570.01(101252 1030.1930.1 8210570.0 39890 )1( 3 6 ' 0 1 0        EX xe xmx ex N N W M A N    =165.15N/mm2 <f=215 N/mm2 , Ok B.Out-plane Beam Overall stability checking Calculated length according two purlin distance or flange bracing distance ,ly=3015mm。 As for uniform section γ =0,μ s=μ w=1 λ y=μ sl/iy0=3015/44.2=68.2,b type section , ψ y=0.762 6.0133.1) 4264.4 122.68 ( 101252 4268210 2.68 4320 2 32       by ψ b’=1.07-0.282/ψ by=0.821 975.0) N N (75.0 N N -1.0 2 ' EX0 ' EX0 t 22 3 6 10 /215/73.189 101252821.0 1030.193975.0 8210762.0 39890 mmNfmmN W M A N bre t ey          (4)《Design Code for Steel Structure》(GB50017-2003) Check the beam web to allow high thickness ratio. Beam end section:

  17. - 19 - 2 6 33 max min

    / 24.141 96.150 10.14686.4 1028181 2131030.193 8210 1089.39 mmN        94.1 max minmax 0       7.115 235 )2.265.048(25.53 0 0  yw ft h  ,OK Mid-span section : 2 6 33 max min / 35.104 09.112 22.10887.3 1028181 2131018.143 8210 1081.31 mmN        93.1 max minmax 0       3.115 235 )2.265.048(25.53 0 0  yw ft h  ,OK (5) Checking the area compressive bearing capacity under the concentrated load of purlin The purlin pass the concentrated load to the upper flange of the beam: F=(1.2×0.27×6+1.4×3.00)×3=18.43KN Lz=a+5hy+2hR=70+5×12+0=130mm 22 3 /215/72.17 1308 1043.180.1 mmNfmmN lt F zw c       Checking the reduce stress at the upper edge of the web Take the internal force at the end of the beam: M=193.30KN·m,N=39.89KN, V=77.60KN 2 4 3 1 /10.146213 1028181 1030.193 mmNy I M n     σc=17.72N/mm2 2 4 3 /61.34 81028181 419122001060.77 mmN It VS w     222222 61.343)89.3910.146(72.1772.17)89.3910.146(3   cc =130.65 N/mm2 <1.2f=258 N/mm2 ,OK

  18. - 20 - (3)Checking

    and calculated Column Shearing Check Max Shearing for column Vmax=32.21KN Consider only with supported stiffening rib 8.0562.0235/ 34.541 /0  y w s f th  fv=125N/mm2 Vu=hwtwfv=426×8×125=426000N=426.0KN Vmax=32.21KN<Vu , OK (2) Bending moment, Shearing force, Pressure action checking together Checking and calculated the end of beam N=81.22KN,V=32.21KN,M=193.30KN·N Because V<0.5Vu , V=0.5Vu, According to code GB70017 ))(( 22 2 2 1 1 A N fhA h h AM fff  ) 8210 81220 215)(21912200 219 219 12200( 2  =215.61KN·m>M=193.30KN·m,M=Mf 10)1 5.0 ( 2     feu f u MM MM V V , OK (3) Overall stability checking Max Internal Force of steel structure : N=102.82KN,M=193.30KN·m In-plane Steel Frame Overall stability checking Height of Column H=6000mm,Length of Rafter L=18090mm. linear rigidity of column K1=Ic1/h=28181×104 /6000=46968.3mm3 linear rigidity of beam K2=Ib0/(2ψS)=28181×104 /(2×9045)=15578.2mm3 K2/K1=0.332, The calculation length coefficient of the column μ=2.934 Calculated Length of Column lx=μh=17604mm λx=lx/ix=17604/185.3=95。0<[λ]=150,b type section , ψx=0.588

  19. - 21 - KN EA N

    e EX 4.1681 0.951.1 821010206 1.1 2 32 2 0 2 ' 0        ,βmx=1.0 ) 4.1681 82.102 588.01(101252 1030.1930.1 8210588.0 1082.102 )1( 3 63 ' 0 1 0         EX xe xmx ex N N W M A N    =181.45N/mm2 <f=215 N/mm2 , OK Out-plane Overall stability checking of Column Calculated length according two purlin distance or fly bracing distance ly=3000mm uniform section structure : γ=0,μs=μw=1 λy=μsl/iy0=3000/44.2=67.9,b type section , ψy=0.764 6.0138.1) 4264.4 129.67 ( 101252 4268210 9.67 4320 2 32       by ψ b’=1.07-0.282/ψ by=0.822 942.0) N N (75.0 N N -1.0 2 ' EX0 ' EX0 t 22 3 63 10 /215/32.193 101252822.0 1030.193942.0 8210764.0 1082.102 mmNfmmN W M A N bre t ey           (4)《Design Code for the Steel Structure》(GB50017-2003) Check the steel column to allow high thickness ratio Column Top Section: 2 6 33 max min / 21.136 99.155 10.14689.9 1028181 2131030.193 8210 1022.81 mmN        87.1 max minmax 0       0.111 235 )2.265.048(25.53 0 0  yw ft h  ,OK Column Bottom Section : 00  5.72 235 )255.016(25.53 0 0  yw ft h  , OK

  20. - 22 - 4.Check

    the lateral movement of the frame under wind load , μ Ic=Ib=28181cm4 ,ζt= Ic l/hIb=18000/6000=3.0 The equivalent horizontal force of the column is calculated by the following formula : H=0.67W=0.67×13.56=9.09KN W=(ω1+ω4)·h=(0.71+1.55)×6.0=13.56KN mmhmm EI Hh t c 40150/][1.14)32( 10281811020612 60001009.9 )2( 12 43 333      6.Detail Checking (1) Column and Beam Connected node 1) Bolt Strength Checking Column and beam node used 10.9Gr , connected by M22 frictional high-strength bolts, The contact surface of the component is sandblasted, Friction surface anti-slip coefficient μ = 0.45, each high-strength bolts of the pre-tension of 190KN, the transmission of internal force design value: N = 39.89KN, V = 77.60KN , M=193.30KN·m The tension of each bolt : KNKN n N y My N i 1521908.065.128 8 89.39 )16.0265.0(4 265.030.193 222 1 1      KNKN n N y My N i 1521908.070.75 8 89.39 )16.0265.0(4 16.030.193 222 2 2      Shear force of Bolt Group : KNVKNpnN f b V 60.776.615819045.019.09.0   , OK Outside row bolt of shear, tension force : 197.0 152 65.128 8/6.615 8/60.77  b t t b V V N N N N ,OK 2)End Plate thickness Checking End Plate thickness : t=21mm。 Calculated according double side support end plate :

  21. - 23 - mm feeebe Nee t wffw twf 9.20 205)]4640(40220046[ 1065.12846406 )](2[ 6

    3       (3) Calculation of shear stress of beam , column joints 22 6 /125/52.106 10426426 1030.193 mmNfmmN tdd M v ccb     , OK (4)Web Plate strength calculated on bolt area Nt2=75.70KN<0.4P=0.4×190=76.0KN 22 3 /215/52.206 846 101904.04.0 mmNfmmN te P ww     ,OK (2)Mid-span Beam Node 1)Bolt Strength Checking Mid-span beam node used 10.9Gr , connected by M20 frictional high-strength bolts, The contact surface of the component is sandblasted, Friction surface anti-slip coefficient μ = 0.45, each high-strength bolts of the pre-tension of 155KN, the transmission of internal force design value: N=31.81KN,V=3.21KN,M=143.18KN·m

  22. - 24 - The

    tension of each bolt : KNKN n N y My N i 1241558.001.95 8 81.31 )16.0265.0(4 265.018.143 222 1 1      KNKN n N y My N i 1241558.079.55 8 81.31 )16.0265.0(4 16.018.143 222 2 2      Shear force of Bolt Group : KNVKNpnN f b V 21.32.502815545.019.09.0   , OK Outside row bolt of shear, tension force : 177.0 124 01.95 8/2.502 8/21.3  b t t b V V N N N N , OK 2)End Plate thickness checking End Plate thickness t=18mm Calculated according double side support end plate : mm feeebe Nee t wffw twf 8.17 205)]4640(40220046[ 1001.9546406 )](2[ 6 3       3) Web Plate strength calculated on bolt area Nt2=55.79KN<0.4P=0.4×155=62.0KN 22 3 /215/48.168 846 101554.04.0 mmNfmmN te P ww     , OK

  23. - 25 - Column

    Foot Design Column hinge connected with foundation, used plane type hinge connected column foot 1)Column foot internal force design value: Nmax=102.82KN , V=32.21KN; Nmin=19.05KN , V=4.30KN。 2)Because column foot shearing force smaller . Vmax=32.21KN<0.4Nmax=41.13KN,so the span no need the shear key, but calculated the column foot which arrange column bracing need the shear key. Nmin>0,Considering the column bracing pull up force, the bolt is still not bear the tension, so only consider the stability of column in the installation process o, according to

  24. - 26 - the

    requirements of the structure can be set to anchor bolt , used 4M24 bolt . 3)Column base plate area and thickness calculated A. Confirmed the column base plate area b=b0+2t+2c=200+2×12+2×(20~50)=264~324mm,b=300mm; h=h0+2t+2c=450+2×12+2×(20~50)=514~574mm,h=550mm; Checking the concrete under base plate design value of Axial compressive strength: Foundation used C20 Concrete , fc=9.6N/mm2 22 3 /6.9/62.0 550300 1082.102 mmNfmmN bh N cc      , OK B. Confirmed the thickness of Base plate According the Column Base Plate area that segmented by column web plate and flange plate calculate separately the maximum bending moment that base plate bearing, as for three plate support area : b2/b1=96/426=0.225<0.3 , Calculated by cantilever plate with length of b2 : mNaM  660814662.0 2 1 2 1 22 4 Cantilever Plate part : mNaM  7755062.0 2 1 2 1 22 4 Base Plate thickness : mmfMt 6.13215/66086/6 max  , t=20mm。 6.Other Structure Calculated (1) Fly Bracing Design Fly Bracing design according axle-center pressed structural member, axle center N calculated as following :

  25. - 27 - KNN fAf N y 16.121009.12 68.44cos60 21512200 235cos60 3    

      Connected bolt used normal C grade M12 Bolt , The calculation length of the corner supports the distance between the two ends of the bolt center : l0=633mm , used L50x4 , section properties: A=3.90cm2 ,Iu=14.69cm4 ,Wu=4.16cm3 , iu=1.94cm,iv=0.99cm λ u=l0/ iu=633/19.4=32.6<[λ ]=200, b type section , ψu=0.927 Strength design value that single side connected angle multiplied with the reduction factor , αy:λ=633/9.9=63.94, αy=0.6+0.0015λ=0.696 22 3 /215/0.48 390927.0696.0 1016.12 mmNfmmN A N uy       , OK (2) Purlin Design Basic Information Purlin used Galvanized C section steel, design according single span simple member, roof slope :1/10,purlin span6m ,set one row sag rod , purlin distance 1.5m ,steel materials Q235B. Loading and Internal force Consider the combination of dead load and roof live load as the control effect , Purlin linear load standard value: Pk=(0.27+0.5)×1.5=1.155KN/m Purlin linear load design value: Pk=(1.2×0.27+1.4×0.5)×1.5=1.536KN/m Px=Psinα=0.153KN/m,Py=Pcosα=1.528KN/m ; Design value of bending moment :

  26. - 28 - Mx=Pyl2 /8=1.528×62 /8=6.88KN·m My=Pxl2 /8=0.153×62 /32=0.17KN·m Section

    choose and section properties Choose : C180×70×20×2.2 Ix=374.90cm4 ,Wx=41.66cm3 ,ix=7.06cm; Iy=48.97cm4 ,Wymax=23.19cm3 ,Wymin=10.02cm3 ,iy=2.55cm,χ 0=2.11cm; Section stress calculated according gross section : 2 3 6 3 6 max 1 /48.172 1019.23 1017.0 1066.41 1088.6 mmN W M W M y y x x        (Press) 2 3 6 3 6 min 2 /18.148 1002.10 1017.0 1066.41 1088.6 mmN W M W M y y x x        (Press) 2 3 6 3 6 max 3 /82.157 1019.23 1017.0 1066.41 1088.6 mmN W M W M y y x x        (Pull) Stability Coefficient of the stress steel structure Web Plate Web Plate is the stiffened Plate,ψ=σmin/σmax=-157.82/172.48=-0.915>-1, k=7.8-6.29ψ+9.78ψ2 =21.743 Up Flange Plate Up flange plate is the biggest press act on the support edge of the stiffened plate ψ=σmin/σmax=148.18/172.48=0.859>-1, kc=5.89-11.59ψ+6.68ψ2 =0.863 The effective wide of the press plate Web Plate k=21.743,kc=0.863,b=180mm,c=70mm,t=2.2mm,σ1=172.48N/mm2 1.1952.1 863.0 743.21 180 70  ck k b c  Coefficient of constraint action between plate components k1=0.11+0.93/(ξ-0.05)2 =0.367 080.348.172/743.21367.0205/205 11   kk

  27. - 29 - Because

    ψ=σmin/σmax<0 , α=1.5 . bc=b/(1-ψ)=180/(1+0.915)=93.99mm b/t=180/2.2=81.82 18αρ=18×1.15×3.080=63.76,38αρ=38×1.15×3.080=134.60 So 18αρ<b/t<38αρ So the effective wide of section mmb tb b ce 62.8199.93)1.0 82.81 060.315.18.21 )1.0 / 8.21 (     be1=0.4be=0.4×81.62=32.65mm,be2=0.6be=0.6×81.62=48.97mm B. Top flange plate k=0.863 , kc=21.743, b=70mm, c=180mm , σ1=172.48N/mm2 1.1512.0 743.21 863.0 70 180  ck k b c  Coefficient of constraint action between plate components 398.1512.0/1/11  k 197.148.172/863.0398.1205/205 11   kk Because ψ=σmin/σmax>0,则 α=1.15-0.15ψ=1.15-0.15×0.859=1.021, bc=b=70mm,b/t=70/2.2=31.82 18αρ=18×1.021×1.197=22.00,38αρ=38×1.021×1.197=46.44 So 18αρ<b/t<38αρ So the effective wide of section mmb tb b ce 05.5770)1.0 82.31 197.1021.18.21 )1.0 / 8.21 (     be1=0.4be=0.4×57.0 5=22.82mm,be2=0.6be=0.6×57.05=34.23mm Purlin top flange plate and Web plate effective area

  28. - 30 - C.

    Lower Flange Plate Lower Flange Plate total cross section under tension and effective . D. Effective net-section modulus Top Flange deduct area the wide :70-57.05=12.95mmWeb Plate deduct area the wide : 93.99-81.62=12.37mm, and the calculated section of web plate with aφ 13 sag rod hole (35mm distance from top flange plate), hole position same as the deduct area, so the deduct area of web plate calculated accordingφ 13.see figure ,the effective net-section modulus : 34 224 10813.3 90 )3590(2.213902.295.121090.374 mmWenx    1.21 )2/2.21.21(2.213)1.2182.222/95.12(2.295.121097.48 224 max  enyW 34 10257.2 mm 1.2170 )2/2.21.21(2.213)1.2182.222/95.12(2.295.121097.48 224 max   enyW 34 10974.0 mm Wenx/Wx=0.915,Wenymax/Wymax=0.973,Wenymin/Wymin=0.972 Strength Calculated Consider roof could stop purlin lateral buckling and torsion: 22 4 6 4 6 max 1 /205/97.187 10257.2 1017.0 10813.3 1088.6 mmNfmmN We M W M ny y enx x        22 4 6 4 6 min 2 /205/99.162 10974.0 1017.0 10813.3 1088.6 mmNfmmN We M W M ny y enx x        Deflection Calculated mmlmmy 30200/][11.25 109.37410206 6000"38'425cos155.1 384 5 43 4       ,OK

  29. - 31 - Structural

    requirement λx=600/7.06=85.0<[λ]=200 , OK λy=300/2.55=117.6<[λ]=200 , OK (3) Wall Girt Design 1)Basic Information The Building project is single floor workshop, column distance 6m,eave height 6m ,above1.2m is corrugated single color sheet ,wall girt distance 1.5m, one row sag rod, steel materials Q235B 2)Loading Calculated Wall Girt used Galvanized C section steel :160x60x20x2.5mm ,wall weight : 0.22KN/m2 Wind Loading Basic wind loading: ω0=1.05×0.45=0.473KN/m2 , wind loading standard value calculated according CECS102:2002 ωk=μsμzω0,μs=-1.1(+1.0) When Calculated the wall girt no need calculated the weight of wall ,the wall sit on ground qx=1.2×0.07=0.084KN/m,qy=-1.1×0.473×1.5×1.4=-1.093KN/m 3)Internal force calculated Mx=0.084×62 /8=0.378KN·m , My=1.093×62 /8=4.919KN·m 4)Strength Calculated Wall Girt :C160×60×20×2.5mm Wxmax=19.47cm3 ,Wmin=8.66cm3 ,Wy=36.02cm3 ,Iy=288.13cm4 Reference wall purlin calculated result and project experience Wenx=0.9 Wx , Weny=0.9 Wy 22 3 6 3 6 /205/2.200 1002.369.0 10919.4 1066.89.0 10378.0 mmNfmmN W M W M eny y enx x        Under wind suction , the sag rod set at the internal of wall girt ,and arrange the inclined sag rod at the bottom of column ,and corrugated color sheet strong connected with

  30. - 32 - outside

    of wall girt ,so don’t need calculated the overall stability of wall girt. 5) Deflection calculated mmlmm 30200/][3.22 1013.28810206 60005.1473.01.1 384 5 43 4      , OK (4) Wind Column Design Basic information Wind Column height 6274mm ,distance 6m ,bearing loading including self-weight, wall girt weight ,and gable wall wind loading ,wind column hinge connected with foundation, design as compression-bending members. Wind Column used as simple member which support roof beam and foundation. Wind Pressure ω0=0.45KN/m2 , Ground roughness category B, Fly Bracing distance 3.0m,Wind Column used Q235B steel . Loading Calculated Wind Column used H section steel 300×200×6×10, self-weight:g1=44.6kg/m Wind Loading calculated according : CECS102:2002 ωk=μsμzω0 ,μs=-1.0(+1.0) ,ω0=1.05×0.45=0.473KN/m2 qz=1.2×(0.07×6×3+44.6×6.274×10-2 )=4.87KN qy=1.4×1.0×1.0×0.473×6=3.97KN/m Wind Column eccentricity under wall girt act :1.2×0.07×6×3×0.23=0.35KN·m Internal Force Calculated N=4.87KN , M=1/8×3.97×6.2742 +0.35=19.88KN·m Local Stability Checking of Steel Structure Width-to-thickness ratio of flange : b/t=96/10=9.6< yf/23513 2 3 63 max min / 49.30 21.32 101.634 1088.19 56800 1087.4 mmN W M A N x x        947.1 max minmax 0       ,因 1.6<α 0<2.0, l0=6274mm,λ x= l0/ ix=48.5<[λ ]=150

  31. - 33 - 7.46 6 280 5.91 235 )2.265.048(

    0 0  wy t h f  , OK Strength Calculated Section Properties : A=56.8cm2 ,Ix=9511cm4,Wx=634.1cm3 ,ix=12.94cm, Iy=1334cm4 ,Wy=133.4cm3 ,iy=4.85cm 22 3 63 /215/7.30 101.63405.1 1088.19 56800 1087.4 mmNfmmN W M A N nxx x n        Checking the In-plane stability under bending moment λ=48.5 , b type section , ψx=0.863 KN EA NEX 1.4463 5.481.1 568010206 1.1 2 32 2 2 '        ,βmx=1.0 ) 1.4463 87.4 8.01(101.63405.1 1088.190.1 56800863.0 1087.4 )8.01( 3 63 '1         EX xx xmx x N N W M A N    =30.85N/mm2 <f=215 N/mm2 , OK Checking the Out-plane stability under bending moment Consider the fly bracing as Lateral Support of Out-plane wind column l0y=3000mm, λy= l0y/ iy=3000/48.5=61.9<[λ]=150,b type section , ψy=0.797 983.0 23544000 07.1 2  yy b f  ,η=1.0,βtx=1.0 3 63 1 101.634983.0 1088.190.10.1 56800797.0 1087.4       xb xtx y W M A N     =32.97N/mm2 <f=215 N/mm2 OK Deflection Calculated Wind Column under the action of horizontal wind loading could see as single span ,simply-supported beam and calculated horizontal deflection according below: mmlmm EI l x k 7.15400/][1.4 10951110206 627497.3 384 5 384 5 43 44       

  32. - 34 - Column

    Foot Design Because wind column bear small vertical load, so the base plate size used 400x300x20mm,anchor bolt used 2M20. (5)Column Bracing Design Column Bracing Layout as Below Column bracing is diagonal strut, used X cross rod bracing ,strut could also used as purlin, Column Bracing loading and internal force Bracing calculated figure as below : The wind loading at the top of gable wall(gable wall height 7.2m) μs=0.8+0.5=1.3 ,ω1=1.3×1.0×0.45×18×7.35/2=38.70KN

  33. - 35 - According

    half wall action on 1/3 wind loading consider the loading standard value: Fwk=1/3×1/2×38.70=6.45KN Node loading design value : Fw=1.4×6.45=9.03KN diagonal strut tension design value N=9.03/cos43.9191°=12.54KN diagonal strut section design and strength checking used φ12 rod , A=113.0mm2 Strength Calculated :N/A=12.54×103 /113.0=111.0N/mm2 <f= 215N/mm2 Ridge Calculated : tension rod no need consider the required of slenderness ratio But Consider the structural used φ16 rod (6)Roof Horizontal Bracing Roof Bracing Layout Plan Purlin distance 1.5m ,horizontal bracing :3m Roof Bracing loading and internal force Roof bracing used tension rod, bracing calculated as figure. On gable wall side wind loading shape coefficient μs=1.0.

  34. - 36 - Node

    Loading Standard Value: Fwk=0.45×1.0×1.0×3.0×7.35/2=4.96KN ; Node Loading Design Value : Fw=4.96×1.4=6.94KN; Diagonal strut tension design value : N=2.5×6.94/cos29.0546°=19.85KN Diagonal strut section design and strength calculated Diagonal strut used :φ12 rod , A=113.0mm2 Strength Calculated :N/A=19.85×103 /113.0=175.7N/mm2 <f= 215N/mm2 Ridge Calculated: tension rod no need consider the required of slenderness ratio But Consider the structural used φ16 rod (7)Canopy Design (1) Basic Information Canopy total length 6000mm,overhang type, overhang length 1500,used Q235B steel, Purlin used C180×70×20×2.2mm (2) Loading Calculated 1)Dead Loading Corrugated single color sheet 0.15KN/m2 Purlin, Canopy Beam and other structures 0.10 KN/m2 Total 0.25 KN/m2 Canopy Beam linear load standard value : 0.25×3=0.75 KN/m2 2)Live Loading Along the wide of sheet each 1.0m choose one construction and repair loading ,each concentrated load 1.0Kn, act area at the outside edge of canopy, so the live loading on canopy is 3.5Kn. 3)Wind Loading Wind loading shape coefficient of canopy :μs=2.0 ,ω0=0.45KN/m2 ωk=μsμzω0=2.0×1.0×0.45=0.90 KN/m2 Convert the loading standard value act on canopy beam: 0.90×3=2.70KN/m (3)Internal calculated and section design

  35. - 37 - Canopy

    Beam calculated as figure g+q=1.2×0.75+1.4×2.70=4.68KN/m P=1.4×3.5=4.9KN Most critical section on the root of beam : M=12.62KN·m , V=11.92KN Canopy Beam used variable cross-section built up H beam (200~100)×150×6×8 Beam root section properties : A=3504m2 ,Ix=6×1843 /12+8×150×962 ×2=2523×104 mm4 , Wx=2523×104 /96=26.3×104 mm3 22 3 0 /125/8.10 1846 1092.11 mmNfmmN th V v w     , OK 22 4 6 /215/7.45 103.2605.1 1062.12 mmNfmmN W M nxx x      , OK Canopy beam connected with column used 4M20 normal C grade bolt -END-

For more information steel warehouse buildings for sale, please get in touch with us!